翻訳と辞書 |
Empower (emergy) : ウィキペディア英語版 | Embodied energy
Embodied energy is the sum of all the energy required to produce any goods or services, considered as if that energy was incorporated or 'embodied' in the product itself. The concept can be useful in determining the effectiveness of energy-producing or energy-saving devices, or the "real" replacement cost of a building, and, because energy-inputs usually entail greenhouse gas emissions, in deciding whether a product contributes to or mitigates global warming. One fundamental purpose for measuring this quantity is to compare the amount of energy produced or saved by the product in question to the amount of energy consumed in producing it. Embodied energy is an accounting method which aims to find the sum total of the energy necessary for an entire product life-cycle. Determining what constitutes this life-cycle includes assessing the relevance and extent of energy into raw material extraction, transport, manufacture, assembly, installation, disassembly, deconstruction and/or decomposition as well as human and secondary resources. Different methodologies produce different understandings of the scale and scope of application and the type of energy embodied. ==History== The history of constructing a system of accounts which records the energy flows through an environment can be traced back to the origins of accounting itself. As a distinct method, it is often associated with the Physiocrat's "substance" theory of value, and later the agricultural energetics of Sergei Podolinsky, a Ukrainian physician, and the ecological energetics of Vladmir Stanchinsky. The main methods of embodied energy accounting as they are used today grew out of Wassily Leontief's input-output model and are called ''Input-Output Embodied Energy analysis''. Leontief's input-output model was in turn an adaptation of the neo-classical theory of general equilibrium with application to "the empirical study of the quantitative interdependence between interrelated economic activities". According to Tennenbaum Leontief's Input-Output method was adapted to embodied energy analysis by Hannon to describe ecosystem energy flows. Hannon’s adaptation tabulated the total direct and indirect energy requirements (the ''energy intensity'') for each output made by the system. The total amount of energies, direct and indirect, for the entire amount of production was called the ''embodied energy''.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Embodied energy」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|